FEATURES

- EASY TO USE, SIMILAR TO AN OP AMP
 \(V_{OUT}/V_{IN} = R_F \), Current Input
 \(V_{OUT}/V_{IN} = R_F/R_{IN} \), Voltage Input
- 100% TESTED FOR BREAKDOWN:
 750V Continuous Isolation Voltage
- ULTRA-LOW LEAKAGE: 0.3\(\mu \)A, max, at 240V/60Hz
- WIDE BANDWIDTH: 60kHz
- 18-PIN DIP PACKAGE

APPLICATIONS

- INDUSTRIAL PROCESS CONTROL
 Transducer Sensing
 (Thermocouples, RTD, Pressure Bridges)
 4mA to 20mA Loops
 Motor and SCR Control
 Ground Loop Elimination
- BIOMEDICAL MEASUREMENTS
- TEST EQUIPMENT
- DATA ACQUISITION

DESCRIPTION

The ISO100 is an optically-coupled isolation amplifier. High accuracy, linearity, and time-temperature stability are achieved by coupling light from an LED back to the input (negative feedback) as well as forward to the output. Optical components are carefully matched and the amplifier is actively laser-trimmed to assure excellent tracking and low offset errors.

The circuit acts as a current-to-voltage converter with a minimum of 750V (2500V test) between input and output terminals. It also effectively breaks the galvanic connection between input and output commons as indicated by the ultra-low 60Hz leakage current of 0.3\(\mu \)A at 250V. Voltage input operation is easily achieved by using one external resistor.

Versatility along with outstanding DC and AC performance provide excellent solutions to a variety of challenging isolation problems. For example, the ISO100 is capable of operating in many modes, including: noninverting (unipolar and bipolar) and inverting (unipolar and bipolar) configurations. Two precision current sources are provided to accomplish bipolar operation. Since these are not required for unipolar operation, they are available for external use (see Applications section).

Designs using the ISO100 are easily accomplished with relatively few external components. Since \(V_{OUT} \) of the ISO100 is simply \(I_{REF}R_F \), gains can be changed by altering one resistor value. In addition, the ISO100 has sufficient bandwidth (DC to 60kHz) to amplify most industrial and test equipment signals.
SPECIFICATIONS

ELECTRICAL

At \(T_A = +25^\circ C \) and \(\pm V_{CC} = 15\text{DC} \), unless otherwise specified.

ISOLATION

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>CONDITIONS</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage (1)</td>
<td></td>
<td>750</td>
<td></td>
<td></td>
<td>2500</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Test Breakdown, DC</td>
<td></td>
<td>10s</td>
<td></td>
<td></td>
<td>2500</td>
<td></td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>Rejection (2) DC</td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td>108</td>
<td></td>
<td></td>
<td>pA/V</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td>146</td>
<td></td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>dB</td>
</tr>
<tr>
<td>AC</td>
<td></td>
<td>400</td>
<td></td>
<td></td>
<td>108</td>
<td></td>
<td></td>
<td>pA/V</td>
</tr>
<tr>
<td>Impedance</td>
<td></td>
<td>10(2)</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ω</td>
</tr>
<tr>
<td>Leakage Current</td>
<td></td>
<td>240Vrms, 60Hz</td>
<td>0.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>µA, rms</td>
</tr>
</tbody>
</table>

OFFSET VOLTAGE (RTI)

INPUT STAGE (V_{OI})		500	300	200	5			µV
vs Temperature		2			2			µV/kHz
vs Input Power Supplies		105						µV/V
vs Time		1						µV/kHz
OUTPUT STAGE (V_{OS})		500	300	200	5			µV
vs Temperature		2			2			µV/kHz
vs Output Power Supplies		105						µV/V
vs Time		1						µV/kHz
Common-Mode Rejection Ratio (2)	30Hz, R_F = 1MΩ	3						nA/V
Common-Mode Range		±10						V

REFERENCE CURRENT SOURCES

Magnitude		10.5	12	12.5	300	200	µA
vs Temperature		300					ppm/°C
vs Power Supplies		0.3					nA/V
Matching		50					nA
vs Temperature		150					ppm/°C
vs Power Supplies		0.3					nA/V
Compliance Voltage		−10	+15				V
Output Resistance		2 x 10^4					Ω

FREQUENCY RESPONSE

SMALL SIGNAL BANDWIDTH	Gain = 1V/µA	60				kHz
FULL POWER BANDWIDTH	Gain = 1V/µA, V_O = ±10V	5				kHz
Slew Rate		0.22	0.31			V/µs
SETTLING TIME		0.1%	100			µs

TEMPERATURE RANGE

Specification	−25	+85					°C
Operating	−40	+100					°C
Storage	−40	+100					°C

UNIPOLAR OPERATION

GAIN		2	5	1	2	1	2	% of FS
INITIAL ERROR (adjustable to zero)	V_O = R_F (I_{IN})	0.03	0.07	0.01	0.05	0.005	0.03	%/°C
vs Temperature		0.05					%/kHz	
vs Time		0.1					%/kHz	
Nonlinearity (2)		0.1	0.4	0.03	0.1	0.02	0.07	%

CURRENT NOISE

0.01Hz to 10Hz	20						pA-p
10Hz	1						pA/V
100Hz	0.7						pA/V
1kHz	0.65						pA/V
ELECTRICAL

At $T_a = +25\, ^\circ C$ and $\pm V_{CC} = 15\, \text{VDC}$, unless otherwise specified.

INPUT OFFSET CURRENT (I_{OS})

<table>
<thead>
<tr>
<th>PARAMETER CONDITIONS</th>
<th>ISO100AP</th>
<th>ISO100BP</th>
<th>ISO100CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Offset</td>
<td>1</td>
<td>10</td>
<td>*</td>
</tr>
<tr>
<td>vs Temperature</td>
<td>0.05</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>vs Power Supplies</td>
<td>0.1</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>vs Time</td>
<td>100</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

POWER SUPPLIES

Input Stage
- Voltage (rated performance): $\pm 15\, \text{V}$
- Supply Current: $I_N = -0.02\, \mu\text{A}$
- Voltage (derated performance): $+8, -1.1\, \mu\text{A}$

Output Stage
- Voltage (rated performance): $\pm 15\, \text{V}$
- Supply Current: $V_O = 0\, \Omega$
- Short Circuit Current Limit: $\leq 40\, \text{mA}$

GENERAL PARAMETERS

Input Current Range
- Linear Operation: $-10, +10\, \mu\text{A}$
- Without Damage: $-1, +1\, \mu\text{A}$

Input Impedance
- $R_L = 2k\, \Omega, R_F = 1M\, \Omega$
- $-10, +10\, \mu\text{A}$

Output Voltage Swing
- $+2, -1.1\, \mu\text{A}$

Output Impedance
- $1200\, \Omega$

GAIN

Initial Error (Adjustable To Zero)
- $V_O = R_F \times I_{IN}$
- $2, 5, 1, 2, 1, 2, 0.03, 0.07, 0.01, 0.05, 0.005, 0.03\%$ of FS

vs Temperature
- $0.03, 0.07, 0.01, 0.05, 0.005, 0.03\%/\, ^\circ C$

vs Bias
- $0.5, 0.4, 0.03, 0.1, 0.02, 0.07\%$

CURRENT NOISE

$I_{IN} = 0.2\, \mu\text{A}$
- $0.01\, \text{Hz}$ to $10\, \text{Hz}$: $1.5, *$ of FS
- $10\, \text{Hz}$: $17, *$ of FS
- $100\, \text{Hz}$: $7, *$ of FS
- $1\, \text{kHz}$: $6, *$ of FS

INPUT OFFSET CURRENT (I_{OS}, bipolar4)

Initial Offset
- $40, 200, 20, 70, 10, 35\, \text{nA}$

vs Temperature
- $3, 2, 1\, \text{nA}/^\circ \text{C}$

vs Power Supplies
- $0.7, *$ of FS

vs Time
- $250, *$ of FS

POWER SUPPLIES

Input Stage
- Voltage (rated performance): $\pm 15\, \text{V}$
- Supply Current: $I_N = +10\, \mu\text{A}$

Output Stage
- Voltage (rated performance): $\pm 15\, \text{V}$
- Supply Current: $V_O = 0\, \Omega$

NOTES:
1. See Typical Performance Curves for temperature effects.
2. See Theory of Operation section for definitions. For dB see Ex. 2, CM and HV errors.
3. Nonlinearity is the peak deviation from a “best fit” straight line expressed as a percent of full scale output.

* Same as ISO100AP.

The information provided herein is believed to be reliable; however, BURR-BROWN assumes no responsibility for inaccuracies or omissions. BURR-BROWN assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user’s own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. BURR-BROWN does not authorize or warrant any BURR-BROWN product for use in life support devices and/or systems.
PIN CONFIGURATION

Bottom View

1. **ISO100**
2. Input Common
3. **+VCCA2**
4. **VOUT**
5. **-VCCA2**
6. **Ref1**
7. **+In**
8. **Bal**
9. **-VCCA1**
10. **NC**(1)
11. **Bal**
12. **Ref2**
13. **NC**(1)
14. **Bal**
15. **+In**
16. **Ref1**
17. **-In**
18. **Input Common**

NOTE: (1) No internal connection.

ABSOLUTE MAXIMUM RATINGS

Supply Voltages ... ±18V
Isolation Voltage, AC pk or DC .. 750V
Input Current .. ±1mA
Storage Temperature Range ... –40°C to +100°C
Lead Temperature (soldering, 10s) ... +300°C
Output Short-Circuit Duration ... Continuous to Ground

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE</th>
<th>TEMPERATURE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO100AP</td>
<td>18-Pin Bottom-Braze DIP</td>
<td>–25°C to +85°C</td>
</tr>
<tr>
<td>ISO100BP</td>
<td>18-Pin Bottom-Braze DIP</td>
<td>–25°C to +85°C</td>
</tr>
<tr>
<td>ISO100CP</td>
<td>18-Pin Bottom-Braze DIP</td>
<td>–25°C to +85°C</td>
</tr>
</tbody>
</table>

ABSOLUTE MAXIMUM RATINGS

PACKAGE INFORMATION

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>PACKAGE</th>
<th>PACKAGE DRAWING NUMBER(1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO100AP</td>
<td>18-Pin Bottom-Braze DIP</td>
<td>220</td>
</tr>
<tr>
<td>ISO100BP</td>
<td>18-Pin Bottom-Braze DIP</td>
<td>220</td>
</tr>
<tr>
<td>ISO100CP</td>
<td>18-Pin Bottom-Braze DIP</td>
<td>220</td>
</tr>
</tbody>
</table>

NOTE: (1) For detailed drawing and dimension table, please see end of data sheet, or Appendix C of Burr-Brown IC Data Book.

ELECTROSTATIC DISCHARGE SENSITIVITY

This integrated circuit can be damaged by ESD. Burr-Brown recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.
TYPICAL PERFORMANCE CURVES

At $T_A = +25^\circ C$, $\pm V_{CC} = 15VDC$, unless otherwise specified.

SMALL SIGNAL FREQUENCY RESPONSE

BIPOLAR OUTPUT SWING vs R_F

BIPOLAR INPUT STAGE SUPPLY CURRENT vs INPUT CURRENT

UNIPOLAR OUTPUT SWING vs R_F

PHASE SHIFT vs FREQUENCY

UNIPOLAR INPUT STAGE SUPPLY CURRENT vs INPUT CURRENT
TYPICAL PERFORMANCE CURVES (CONT)

At $T_A = +25^\circ\text{C}$, $\geq V_{CC} = 15\text{VDC}$, unless otherwise specified.

ISOLATION LEAKAGE CURRENT vs ISOLATION VOLTAGE

- AC Leakage Current (µA RMS)
- DC Leakage Current (pA)
- Isolation Voltage (kV)

CONTINUOUS DC ISOLATION VOLTAGE vs TEMPERATURE

- Continuous DC Isolation Voltage (V)
- Temperature ($^\circ\text{C}$)

AC ISOLATION VOLTAGE vs TEMPERATURE

- AC Isolation Voltage (Vp)
- Temperature ($^\circ\text{C}$)

RATE OF GAIN ERROR SHIFT vs ISOLATION VOLTAGE

- Rate of Change of Gain Error (%/hr)
- Temperature ($^\circ\text{C}$)

GAIN ERROR vs TEMPERATURE AND ISOLATION VOLTAGE

- Gain Error (Normalized to $+25^\circ\text{C}$)
- Temperature ($^\circ\text{C}$)

NOTES:
- V_M and T_T approximate the threshold for the indicated gain shift. This is caused by the properties of the optical cavity.
- $T_T = +65^\circ\text{C}$, $V_T = 200\text{VDC}$. Shift does not occur for AC voltages.

- $V_M < V_T$
- $V_M > V_T$
THEORY OF OPERATION

The ISO100 is fundamentally a unity gain current amplifier intended to transfer small signals between electrical circuits separated by high voltages or different references. In most applications, an output voltage is obtained by passing the output current through the feedback resistor \(R_F \).

The ISO100 uses a single light emitting diode (LED) and a pair of photodiode detectors coupled together to isolate the output signal from the input.

Figure 1 shows a simplified diagram of the amplifier. \(I_{\text{REF1}} \) and \(I_{\text{REF2}} \) are required only for bipolar operation to generate a midscale reference. The LED and photodiodes \((D_1 \text{ and } D_2) \) are arranged such that the same amount of light falls on each photodiode. Thus, the currents generated by the diodes match very closely. As a result, the transfer function depends upon optical match rather than absolute performance. Laser-trimming of the components improves matching and enhances accuracy, while negative feedback improves linearity. Negative feedback around \(A_1 \) occurs through the optical path formed by the LED and \(D_1 \). The signal is transferred across the isolation barrier by the matched light path to \(D_2 \).

The overall isolation amplifier is noninverting (a positive going input produces a positive going output).

INSTALLATION AND OPERATING INSTRUCTIONS

UNIPOLAR OPERATION

In Figure 1, assume a current, \(I_{\text{IN}} \), flows out of the ISO100 (\(I_{\text{IN}} \) must be negative in unipolar operation). This causes the voltage at pin 15 to decrease. Because the amplifier is inverting, the output of \(A_1 \) increases, driving current through the LED. As the LED light output increases, \(D_1 \) responds by generating an increasing current. The current increases until the sum of the currents in and out of the input node (–Input to \(A_1 \)) is zero. At that point, the negative feedback through \(D_1 \) has stabilized the loop, and the current \(I_{\text{IN}} \) equals the input current plus the bias current. As a result, no bias current flows in the source. Since \(D_1 \) and \(D_2 \) are matched \((I_{D1} = I_{D2}) \), \(I_{\text{IN}} \) is replicated at the output via \(D_2 \). Thus, \(A_1 \) functions as a unity-gain current amplifier, and \(A_2 \) is a current-to-voltage converter, as described below.

Current produced by \(D_2 \) must either flow into \(A_2 \) or \(R_F \). Since \(A_2 \) is designed for low bias current \((\approx 10nA) \), almost all of the current flows through \(R_F \) to the output. The output voltage then becomes:

\[
V_O = (I_{D2})R_F = (I_{D1} \pm I_{OS})R_F = -(I_{\text{IN}})R_F = I_{\text{IN}}R_F \tag{1}
\]

where, \(I_{OS} \) is the difference between \(A_1 \) and \(A_2 \) bias currents. For input voltage operation \(I_{\text{IN}} \) can be replaced by a voltage source \((V_{IN}) \) and series resistor \((R_{IN}) \), since the summing node of the op amp is essentially at ground. Thus, \(I_{\text{IN}} = V_{IN}/R_{IN} \).

Unipolar operation does have some constraints, however. In this mode the input current must be negative so as to produce a positive output voltage from \(A_1 \) to turn the LED on. A current more negative than 20nA is necessary to keep the LED turned on and the loop stabilized. When this condition is not met, the output may be indeterminant. Many sensors generate unidirectional signals, e.g., photoconductive and photodiode devices, as well as some applications of thermocouples. However, other applications do require bipolar operation of the ISO100.

BIPOLAR OPERATION

To activate the bipolar mode, reference currents as shown in Figure 1 are attached to the input nodes of the op amps. The input stage stabilizes just as it did in unipolar operation.

FIGURE 1. Simplified Block Diagram of the ISO100.
The output then becomes:

$$V_{OUT} = R_F \left(\frac{V_{IN} \pm V_{OS}}{R_{IN}} - I_{REF1} \pm I_{OS}(1 + A_e) + I_{REF2} \right) \pm V_{OSO}$$\\
\hspace{1cm} (2)$$

The total input referred offset voltage of the ISO100 can be simplified in the unipolar case by assuming that $A_e = 0$ and $V_{IN} = 0$:

$$V_{OUT} = R_F \left(\frac{\pm V_{OSI}}{R_{IN}} \pm I_{OS \, UNIPOLAR} \right) \pm V_{OSO}$$\\
\hspace{1cm} (3)$$

This voltage is then referred back to the input by dividing by R_F/R_{IN}.

$$V_{OS \, (RTI)} = (\pm V_{OSI}) \pm R_{IN} (I_{OS \, UNIPOLAR}) + V_{OSO}(R_F/R_{IN})$$\\
\hspace{1cm} (4)$$

Example 1. Refer to Figure 2 and Electrical Specifications Table.

Given:

- $I_{OS \, BIPOLAR} = +35nA$
- $R_{IN} = 100k\Omega$
- $R_F = 1M\Omega$ (gain = 10)
- $V_{OSI} = +200\mu V$
- $V_{OSO} = +200\mu V$

Find: The total offset voltage error referred to the input and output when $V_{IN} = 0V$.

$$V_{OS \, total \, RTI} = [\pm (V_{OSI} \pm R_{IN} (V_{OSBIPOLAR}) - R_{IN} (I_{REF1}))] \]$$
$$\hspace{1cm} [1 + A_e] + R_{IN} I_{REF2} \pm V_{OSO}(R_F/R_{IN})$$
$$\hspace{1cm} = [(0.2mV + 3.5mV - 1.25V) \]$$
$$\hspace{1cm} [1.02] + 100k\Omega (12.5\mu A)] +$$
$$\hspace{1cm} 200\mu V(1M\Omega/100k\Omega)$$
$$\hspace{1cm} = [-21.2mV]$$

$$V_{OS \, total \, RTO} = V_{OS \, total \, RTI} \times R_F/R_{IN}$$
$$\hspace{1cm} = -212mV \times 10$$
$$\hspace{1cm} = -212mV$$

DC ERRORS

Errors in the ISO100 take the form of offset currents and voltages plus their drifts with temperature. These are shown in Figure 2.

A_1 and A_2—assumed to be ideal amplifiers.

V_{OSO} and V_{OSI}—the input offset voltages of the output and input stage, respectively. V_{OSO} appears directly at the output, but V_{OSI} appears at the output as

$$V_{OSI} = \frac{R_F}{R_{IN}} \cdot V_{OS}$$\\
\hspace{1cm} (1)$$

I_{OS}—the offset current. This is the current at the input necessary to make the output zero. It is equal to the combined effect of the difference between the bias currents of A_1 and A_2 and the matching errors in the optical components in the unipolar mode.

I_{REF1} and I_{REF2}—reference currents that, when connected to the inputs, enable bipolar operation. The two currents are trimmed, in the bipolar mode, to minimize the $I_{OS \, BIPOLAR}$ error.

I_{D1} and I_{D2}—currents generated by each photodiode in response to the light from the LED.

A_e—gain error.

$$A_e = \left| \frac{\text{Ideal gain}}{\text{Actual gain}} \right| - 1$$

FIGURE 2. Circuit Model for DC Errors in the ISO100.

NOTE: (1) Use 1MΩ or greater to achieve a full scale output of 10V.
NOTE: This error is dominated by $I_{OS\text{ bipolar}}$ and the reference current times the gain error (which appears as an offset). The error for unipolar operation is much lower. The error due to offset current can be zeroed using circuits shown in Figures 6 and 7. The gain error is adjusted by trimming either R_F or R_{IN}.

COMMON-MODE AND HIGH VOLTAGE ERRORS

Figure 3 shows a model of the ISO100 that can be used to analyze common-mode and high voltage behavior.

Definitions of CMR and IMR

I_{OS} is defined as the input current required to make the ISO100’s output zero. CMRR and IMRR in the ISO100 are expressed as conductances. CMRR defines the relationship between a change in the applied common-mode voltage (V_{CM}) and the change in I_{OS} required to maintain the amplifier’s output to zero:

\[
\text{CMRR (I-mode)} = \frac{\Delta I_{OS}}{\Delta V_{CM}} \text{ in nA/V} \quad (5)
\]

\[
\text{CMRR (V-mode)} = \left[\frac{\Delta I_{OS}}{\Delta V_{CM}} \right] R_{IN} = \frac{\Delta V_{ERR_{CM}}}{\Delta V_{CM}} \text{ in V/V} \quad (6)
\]

IMRR defines the relationship between a change in the applied isolation mode voltage (V_{IM}) and the change in I_{OS} required to maintain the amplifier’s output to zero:

\[
\text{IMRR (I-mode)} = \frac{\Delta I_{OS}}{\Delta V_{IM}} \text{ in pA/V} \quad (7)
\]

\[
\text{IMRR (V-mode)} = \left[\frac{\Delta I_{OS}}{\Delta V_{IM}} \right] R_{IN} = \frac{\Delta V_{ERR_{IM}}}{\Delta V_{IM}} \text{ in V/V} \quad (8)
\]

CMRR and IMRR in V/V are a function of R_{IN}.

V_{IM} is the voltage between input common and output common.

V_{CM} is the common-mode voltage (noise that is present on both input lines, typically 60Hz).

V_{ERR} is the equivalent error signal, applied in series with the input voltage, which produces an output error identical to that produced by application of V_{CM} and V_{IM}.

CMRR and IMRR are the common-mode and isolation-mode rejection ratios, respectively.

Total Capacitance (C_1 and C_2) is distributed along the isolation barrier. Most of the capacitance is coupled to low impedance or noncritical nodes and affects only the leakage current. Only a small capacitance (C_2) couples to the input of the second stage, and contributes to IMRR.

Example 2. Refer to Figure 3 and Electrical Specification Table.

Given: $V_{CM} = 1\text{VAC peak at 60Hz}, V_{IM} = 200\text{VDC}$, $\text{CMRR} = 3\text{nA/V, IMRR} = 5\text{pA/V}$, $R_{IN} = 100\text{k}\Omega, R_F = 1\text{M}\Omega$ (Gain = 10)

Find: The error voltage referred to the input and output when $V_{IN} = 0\text{V}$

\[
V_{ERR_{RTI}} = (V_{CM})(CMRR)(R_{IN}) + (V_{IM})(IMRR)(R_{IN})
= 1\text{V} (3\text{nA/V})(100\text{k}\Omega)
+ 200\text{V} (5\text{pA/V})(100\text{k}\Omega)
= 0.3\text{mV} + 0.1\text{mV}
= 0.4\text{mV}
\]

\[
V_{ERR_{RTO}} = V_{ERR_{RTI}} (R_F/R_{IN})
= 0.4\text{mV} (10)
= 4\text{mV (with DC IMRR)}
\]

NOTE: This error is dominated by the CMRR term.

For purposes of comparing CMRR and IMRR directly with **dB specifications**, the following calculations can be performed:

\[
\text{CMRR in V/V} = \text{CMRR (I-mode)}(R_{IN})
= 3\text{nA/V}(100\text{k}\Omega)
= 0.3\text{mV/V}
\]

\[
\text{CMR} = 20 \log (0.3\text{mV/V}) = -70\text{dB at 60Hz}
\]

\[
\text{IMRR in V/V} = \text{IMRR (I-mode)}(R_{IN}) = 5\text{pA/V}(100\text{k}\Omega)
= 0.5\text{µV/V}
\]

\[
\text{IMR} = 20 \log (0.5 \times 10^{-6} \text{V/V}) = -126\text{dB at DC}
\]

Example 3.

In Example 3, V_{IM} is an AC signal at 60Hz and

\[
\text{IMR} = \frac{400\text{pA}}{V}
\]

\[
V_{ERR_{RTI}} = V_{ERR_{CM}} + V_{ERR_{IM}}
= 0.3\text{mV} + 200\text{V} (400\text{pA/V})(100\text{k}\Omega)
= 8.3\text{mV}
\]

\[
V_{ERR_{RTO}} = 83\text{mV (with AC IMRR)}
\]
Example 4.
Given: Total error RTO from Examples 1 and 3 as 378mV worst case.
Find: Percent error of +10V full scale output
\[
\% \text{ Error} = \frac{V_{\text{ERR TOTAL}}}{V_{FS}} \times 100\%
\]
\[
= \frac{378 \text{mV}}{10 \text{V}} \times 100\%
\]
\[
= 3.78\%
\]

NOISE ERRORS
Noise errors in the unipolar mode are due primarily to the optical cavity. When the full 60kHz bandwidth is not needed, the output noise of the ISO100 can be limited by either a capacitor, \(C_F\) in the feedback loop or by a low-pass filter following the output. This is shown in Figure 4. Noise in the bipolar mode is due primarily to the reference current sources, and can be reduced by the low-pass filters shown in Figure 5.

OPTIONAL ADJUSTMENTS
There are two major sources of offset error: offset voltage and offset current. \(V_{OSI}\) and \(V_{OSO}\) of the input and output amplifiers can be adjusted independently using external potentiometers. An example is shown in Figure 17. Note that \(V_{OSO}\) (500µV, max) appears directly at the output, but \(V_{OSI}\) appears at the output multiplied by gain \((R_F/R_{IN})\). In general, \(V_{OS}\) is small compared to the effect of \(I_{OS}\) (see Example 1). To adjust for \(I_{OS}\) use a circuit which intentionally unbalances the offset in one direction and then allows for adjustment back to zero.

Figure 6 shows how to adjust unipolar errors at zero input. The unipolar amplifier can be used down to zero input if it is made to be “slightly bipolar.” By sampling the reference current with \(R_5\) and \(R_6\), the minimum current required to keep the input stage in the linear region of operation can be established. \(R_7\) and \(R_8\) are adjusted to cancel the offset created in the input stage. This brings the output to zero, when the input is zero. Although the amplifier can now operate down to zero input voltage, it has only a small portion of the current drain and noise that the true bipolar configuration would have.

Adjusting the bipolar errors is illustrated in Figure 7. Each of the errors are adjusted in turn. With \(V_{IN} = \text{“open.”}\), \(I_{OS}\) is trimmed by adjusting \(R_{10}\) to make the output zero. \(R_{14}\) is then adjusted to trim the gain error. The effects of offset voltage are removed by adjusting \(R_{14}\).
FIGURE 7. Adjusting the Bipolar Errors.

APPLICATION INFORMATION

The small size, low offset and drift, wide bandwidth, ultralow leakage, and low cost, make the ISO100 ideal for a variety of isolation applications. The basic mode of operation of the ISO100 will be determined by the type of signal and application.

Major points to consider when designing circuits with the ISO100.

1. Input Common (pin 18) and –In (pin 17) should be grounded through separate lines. The Input Common can carry a large DC current and may cause feedback to the signal input.

2. Use shielded or twisted pair cable at the input for long lines.

3. Care should be taken to minimize external capacitance across the isolation barrier.
4. The distance across the isolation barrier, between external components and conductor patterns, should be maximized to reduce leakage and arcing.

5. Although not an absolute requirement, the use of conformally-coated printed circuit boards is recommended.

6. When in the unipolar mode, the reference currents (pins 8 and 16) must be terminated. I_{IN} should be greater than 20nA to keep internal LED on.

7. The noise contribution of the reference currents will cause the bipolar mode to be noisier than the unipolar mode.

8. The maximum output voltage swing is determined by I_{IN} and R_F.

\[V_{SWING} = I_{IN \, MAX} \times R_F \]

9. A capacitor (about 3pF) can be connected across R_F to compensate for peaking in the frequency response. The peaking is caused by the pole generated by R_F and the capacitance at the input of the output amplifier.

Figure 12 through 18 show applications of the ISO100.

FIGURE 12. Two-Port Isolation Photodiode Amplifier Unipolar.

FIGURE 13. Precision Bridge Isolation Amplifier (Unipolar).

NOTES: (1) For isolated supplies see Figure 12. (2) In this example, the internal precision current reference, I_{REF}, provides bridge excitation. (3) Pin 8 of the INA101 must be more negative than –2mV for linear operation of the ISO100 with R_1 = 100kΩ.
FIGURE 14. Three-Port Isolation Thermocouple Amplifier (Bipolar).

FIGURE 15. Isolated Test Equipment Amplifier (Unipolar with Offsetting).

FIGURE 16. Isolated 4mA to 20mA Transmitter (Example of an isolated voltage controlled current source).
FIGURE 17. Four-Port Isolated Summing Amplifier (Unipolar).

\[V_O = 1M \left(\frac{V_{IN1}}{10k} + \frac{V_{IN2}}{100k} + I_{IN1} + I_{IN2} \right) \]

\[\pm V_{CC} \text{ to input stages of amplifiers} \]

724 Isolated Power Supply

NOTE: (1) No additional connections to output amplifiers
Note that a variety of input/gain configurations can be used.
FIGURE 18. Multiple Channel Isolation Amplifier (Bipolar) with Programmable Gain (useful in data acquisition systems).

NOTE: (1) For isolated power supplies see Figures 10 and 11.
PACKAGING INFORMATION

<table>
<thead>
<tr>
<th>Orderable Device</th>
<th>Status (1)</th>
<th>Package Type</th>
<th>Package Drawing</th>
<th>Pins</th>
<th>Package Qty</th>
<th>Eco Plan (2)</th>
<th>Lead/Ball Finish</th>
<th>MSL Peak Temp (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO100AP</td>
<td>NRND</td>
<td>CDIP BB</td>
<td>JDG</td>
<td>18</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>ISO100BP</td>
<td>NRND</td>
<td>CDIP BB</td>
<td>JDG</td>
<td>18</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
<tr>
<td>ISO100CP</td>
<td>NRND</td>
<td>CDIP BB</td>
<td>JDG</td>
<td>18</td>
<td>TBD</td>
<td>Call TI</td>
<td>Call TI</td>
<td></td>
</tr>
</tbody>
</table>

(1) The marketing status values are defined as follows:
- **ACTIVE**: Product device recommended for new designs.
- **LIFEBUY**: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
- **NRND**: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
- **PREVIEW**: Device has been announced but is not in production. Samples may or may not be available.
- **OBSOLETE**: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
- **TBD**: The Pb-Free/Green conversion plan has not been defined.
- **Pb-Free (RoHS)**: TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
- **Pb-Free (RoHS Exempt)**: This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
- **Green (RoHS & no Sb/Br)**: TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material).

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

<table>
<thead>
<tr>
<th>Products</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amplifiers</td>
<td>Amplifiers.ti.com</td>
</tr>
<tr>
<td>Data Converters</td>
<td>dataconverter.ti.com</td>
</tr>
<tr>
<td>DLP® Products</td>
<td>www.dlp.com</td>
</tr>
<tr>
<td>DSP</td>
<td>dsp.ti.com</td>
</tr>
<tr>
<td>Clocks and Timers</td>
<td>www.ti.com/clocks</td>
</tr>
<tr>
<td>Interface</td>
<td>interface.ti.com</td>
</tr>
<tr>
<td>Logic</td>
<td>logic.ti.com</td>
</tr>
<tr>
<td>Power Mgmt</td>
<td>power.ti.com</td>
</tr>
<tr>
<td>Microcontrollers</td>
<td>microcontroller.ti.com</td>
</tr>
<tr>
<td>RFID</td>
<td>www.ti-ridf.com</td>
</tr>
<tr>
<td>RF/IF and ZigBee® Solutions</td>
<td>www.ti.com/prf</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/audio</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/automotive</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/broadband</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/digitalcontrol</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/medical</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/military</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/opticalnetwork</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/security</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/telephony</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/video</td>
</tr>
<tr>
<td></td>
<td>www.ti.com/wireless</td>
</tr>
</tbody>
</table>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated